
Emil Hørning & Alexander Ramos

Privacy Preserving
Machine Learning

Supervisor: Bernardo Machado David

1

TABLE OF
CONTENTS

Privacy Preserving
Machine Learning

A brief introduction

Background theory
(Deep) neural networks

Multi party computation/secret shares
Types of security/adversarial models

01

03SecureNN

02

05
06
07

SecureNNs PPML approach
Security guarantees

Protocol structure
End-to-end protocol

Communication bottlenecks Experiments
Our implementation
Design of experiments

Results

Discussion
ComputeMSB vs. BitDecompOPT - local setting
Theoretical vs. actual communication
Combining approaches
Utilizing full bit-decomposition

04
Improving SecureNN
Initial attempt
Alternative approach (The Genome Paper)
Bit-decomposition
Optimised bit-decomposition
(ComposeNet)

2

Privacy Preserving
Machine Learning

01
A brief introduction

3

 Input Blood
pressure Fat% ... Label

Alex 132 20 ... Unhealthy

Emil 92 8 ... Healthy

...

● Data with X number of rows
(training examples), and Y
number of columns (features)

● Label controls the training

● ML algorithm learns a hidden
function which describes the
data

Privacy Preserving Machine Learning

4

Privacy Preserving Machine Learning

Traditional ML

● Data holders outsource ML

● Data may be sensitive

5

Privacy Preserving Machine Learning

Private machine learning

● Data holders outsource ML

● Data may be sensitive

6

Background theory
02

(Deep) neural networks
Multi party computation/secret shares

Types of security/adversarial models

7

02: (Deep) Neural Networks

● A neural network estimates the parameters
of “the hidden” function which describes a
dataset

● Consists of input, hidden, and output
layers

● Weights (parameters) are the edges
● Forward propagation

○ Linear combination of input values
and weights activation function

○ Matrix multiplication
● Backpropagation

○ Adjust weights according to output
and true label

8

02: Secure Multi-Party
Computation

● N parties want to compute some function without
revealing content of own input

● Functions are implemented as protocols that are
private and secure

● Such MPC protocols can be used to do private
machine learning

9

02: Types of security

Input privacy

The input remains private and no
party learns the secret of other

parties

Correctness Robust
Protocol achieves

this in any scenario

Any number of colluding dishonest parties
participating in the protocol, should not be

able to, by deviating from the protocol,
force or trick an honest party to output

something incorrect
Abort

Honest party detects
deviation and aborts

10

02: Adversarial model

Passive adversary
● Adversary that corrupts 1 party and

observes the protocol
● Tries to learn secrets
● Follows the protocol dutifully

Active adversary
● Adversary that corrupts 1 party and deviates from

the protocol
● Tampers with inputs and outputs to alter result of

protocol
● Tampers with inputs and outputs to learn secrets
● May halt the protocol to prevent completion

11

SecureNN
03

SecureNNs PPML approach
Security guarantees

Protocol structure
End-to-end protocol

Communication bottlenecks

12

03: SecureNNs PPML approach

● MPC protocols (3 parties)

● Input secret shares send to the 3 parties

● Run interactive protocol to train a neural network

● Trained model retained as secret shares

● Private prediction

13

03: Security guarantees

Passive adversary

● SecureNN provides full input
privacy against a single passive
corrupted party

● Proved with simulation proof
● Correctness of the protocol

follows trivially

Active adversary

● SecureNN provides full input privacy
against an active adversary corrupting 1
party

● SecureNN can’t provide correctness for
an active adversary

14

03: Protocol structure

Main
protocols

Supporting
protocols

15

03: End-to-end protocol

● Construct a NN using a sequence of
protocol calls

● E.g. a 3 layer network with a softmax
output layer

1. Call MatMul
2. Call ReLU
3. Call MatMul
4. Call ReLu
5. Call DIV

16

03: Communication bottlenecks

● Function DReLU uses 9 rounds of
communication

● Uses trick to obtain MSB by
converting to odd ring

17

Improving SecureNN
04

Initial attempt
Alternative approach (The Genome Paper)
Bit-decomposition
Optimised bit-decomposition (ComposeNet)

18

04: Initial attempt

● Remove ‘Share Convert’ and assume shares to be in ZL-1 already

● First month was spent trying to compile/run SecureNN code

● We were in contact with main author Sameer Wagh, but it wasn’t very helpful

● Later we realized our logic was wrong about removing ‘Share Convert’ and started
looking for other ways to optimize ComputeMSB

19

04: Alternative PPML approach

● The Genome Paper* released during our thesis
● Presents 2-PC method for performing logistic

regression
● Same method can be used for private neural

networks
● Won first prize in Track 4 of iDash 2019
● Secure bit-decomposition to obtain shares of MSB

*”High performance logistic regression for privacy preserving genome analysis” by De Cock et. al.
20

04: Bit-decomposition

● Protocols exists that produces XOR shares of all bits of a shared value.

● Utilize this to get shares of MSB.

● Genome Paper presents 3 Bit Decomposition protocols for ƛ-bit integers
○ Linear Adder circuit (Linear, ƛ rounds)
○ Speculative optimized (2 + log2(ƛ) rounds)
○ Hyper Optimized ComposeNET (1 + log2(ƛ) rounds) (BitDecompOPT)

● We implemented ComputeMSB and BitDecompOPT to compare.

21

04: BitDecompOPT

● Based on the speculative method
○ Logarithmic rounds

● Observation: The carry bit depends on 2
signals

● Computing all matrix compositions M1 to
Mi yields the carry vector in upper right
hand entry of resulting matrix

PropagateGenerate

22

04: BitDecompOPT

● Matrix composition network: ComposeNet

● Logarithmic depth network

23

Experiments
05
Our implementation
Design of experiments

24

05: Our implementation

Architectural implementations
● Secret share logic
● Data structures for handling integers

in ZL
● Networking infrastructure

Protocol implementations
○ Multiplication 2-party: Single-MatMul,

Single-Mult, List-MatMul, List-Mult
○ Multiplication 3-party: Single-Mult
○ SC (Share Convert)
○ PC (Private Compare)
○ ComputeMSB
○ ComposeNET
○ BitDecomp
○ BitDecompOPT 25

05: Design of experiments

● Bitlength L = 264, and prime p = 67
● Each protocol was run 1000 times

Digitalocean.com
3x Ubuntu 18.04 lts (64 bit)

1 core, 1 GB RAM

Windows 10 (64 bit)
4 cores, 16 GB RAM
Local ping: 0.19 ms

Local experiments

Distributed experiments

London

FrankfurtAmsterdam

B12.23 ms

A
8.0

5 m
s

C
18.21 ms

26

Results
06

27

06: Results

Raw local computation

Local vs distributed

28

Discussion
07

ComputeMSB vs. BitDecompOPT - local setting
Theoretical vs. actual communication

Combining approaches
Utilizing full bit-decomposition

29

07: ComputeMSB vs
BitDecompOPT - Local setting

● SecureNN’s ComputeMSB runs faster than
BitDecompOPT in a local setting

● Tradeoff: Local computation and communication
rounds

● BitDecompOPT introduces significant
computational overhead.

Less local computation

More communication rounds

SC + ComputeMSB

30

More local computation

Less communication rounds

BitDecompOPT

07: Theoretical vs actual
Communication

● Theoretical communication is based on the assumption that the implementation
executes with no overhead.

● Requires intricate knowledge of low level programming and networking, which was
out of scope for this project.

● Our results are achieved from an implementation that is far from the theoretical data
transfer.

Theoretical Actual

31

07: Combining approaches

● Implement BitDecomOPT in SecureNN to reduce DReLU rounds 9 7

● Both SecureNN and The Genome Paper claim same security.

● Problem with 3 party 2 party

● SecureNN already uses a trusted initializer for common randomness, use it for beaver triplets
to properly implement BitDecompOPT

32

07: Utilizing full bit-decomposition

● Bit-decomposition faster than computing MSB directly

● But needs to compute the full bit-decomposition of a value to obtain MSB

● Computes ƛ-1 bit values which are not used for anything else

● Further optimize by utilizing values computed during bit-decomposition

○ Other activation functions?

33

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik.
Please keep this slide for attribution.

THANKS

34

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

