. Privacy Preserving
| /| Machlne Learnmg

Emil Horning & Alexander Ramos

Supervisor: Bernardo Machado David

Privacy Preserving
Machine Learning
A brief introduction

Background theory

(Deep) neural networks
Multi party computation/secret shares
Types of security/adversarial models

SecureNN

SecureNNs PPML approach
Security guarantees
Protocol structure
End-to-end protocol
Communication bottlenecks

01
02

03

TABLE OF
CONTENTS Q5

07

Improving Secure

Initial attempt
Alternative approach (The Genome Paper)
Bit-decomposition

Optimised bit-decomposition
(ComposeNet)

Experiments

Our implementation
Design of experiments

0 6 Results

Discussion

ComputeMSB vs. BitDecompOPT - local setting
Theoretical vs. actual communication
Combining approaches

Utilizing full bit-decomposition

01

Privacy Preserving
Machine Learning

A brief introduction

Privacy Preserving Machine Learning

Data with X number of rows Input Blood Label

(training examples), and Y pressure

number of columns (features) -_—
132 20 " Unhealthy
Label controls the training

92 " Healthy

ML algorithm learns a hidden
function which describes the
data

Privacy Preserving Machine Learning

Traditional ML

==

Test data

e Data holders outsource ML

4
e Data may be sensitive
E=_]= -- ki
R e

Training data

. . Prediction
Train ML algorithm Model ML algorithm

Privacy Preserving Machine Learning

Private machine learning E" i’

Test data

e Data holders outsource ML

4
e Data may be sensitive é"@ :I] :>:> E — ﬂ
EE— et

Training data

i i Model) Prediction
Train ML algorithm ode ML algorithm

Background theory

(Deep) neural networks
Multi party computation/secret shares
Types of security/adversarial models

02: (Deep) Neural Networks

A neural network estimates the parameters
of “the hidden” function which describes a
dataset
Consists of input, hidden, and output
layers
Weights (parameters) are the edges
Forward propagation

o Linear combination of input values

and weights = activation function

o Matrix multiplication
Backpropagation

o Adjust weights according to output
- “.andtrue label

Input layer :

Hidden layers

02: Secure Multi-Party
Computation

revealing content of own input

N parties want to compute some function without 8 .

Functions are implemented as protocols that are
private and secure

Such MPC protocols can be used to do private
machine learning

02: Types of security

Input privacy

The input remains private and no
party learns the secret of other
parties

Correctness

Any number of colluding dishonest parties
participating in the protocol, should not be
able to, by deviating from the protocol,
force or trick an honest party to output
something incorrect

Robust

Protocol achieves
this in any scenario

Abort

Honest party detects
deviation and aborts

10

02: Adversarial model

Passive adversary

e Adversary that corrupts 1 party and
observes the protocol

e Tries to learn secrets

e Follows the protocol dutifully

Active adversary

e Adversary that corrupts 1 party and deviates from
the protocol

e Tampers with inputs and outputs to alter result of
protocol

e Tampers with inputs and outputs to learn secrets

e May halt the protocol to prevent completion

11

03

SecureNN

SecureNNs PPML approach
Security guarantees
Protocol structure
End-to-end protocol
Communication bottlenecks

12

03: SecureNNs PPML approach

MPC protocols (3 parties) A \ |
. - 7}\ \\\“s{/
Input —> secret shares —> send to the 3 parties .

Run interactive protocol to train a neural network

Trained model retained as secret shares ’
Private prediction
. s
e o O O
HEEE“ ot ?g‘ﬂ*ﬁ
UEl) o5 spitinio SecureNN inference [T+
“|7+ ~ t_:—:[’j—j—:; secret shares Run training nrl“
'\ HEP{‘ m
&
Hospitals (data) 3 Servers Trained Model MLaaS
(secret shared)

13

Passive adversary

SecureNN provides full input
privacy against a single passive
corrupted party

Proved with simulation proof
Correctness of the protocol
follows trivially

03: Security guarantees

Active adversary

SecureNN provides full input privacy
against an active adversary corrupting 1
party

SecureNN can't provide correctness for
an active adversary

14

03: Protocol structure

Matrix Private

Compare

Supporting
protocols

Main
protocols

Derivative o
MaxPool
(DMP)

MaxPool RelLU Division

_— (MP) (ReLU) (DIV)

03: End-to-end protocol

e Construct a NN using a sequence of

protocol calls 1 G ReLU (uq)
Abﬂ[(ui) = m

e [E.g. a3 layer network with a softmax
output layer

Input layer ReLU layer ReLU layer Softmax layer Output layer

1. Call MatMul

2. CallRelU _’®
3. Call MatMul

4. CallRelu _.@
5 CallDIV

=

./ 03: Communication bottlenecks

Uses trick to obtain MSB by
converting to odd ring

Function DReLU uses 9 rounds of
communication

AN

Algorithm 6 ReLU', Il[)ReLu({P(), Pl},Pz):

Input: Py, P; hold (a)¥ and (a)F, respectively.

Output: Py, Py get (ReLU'(a))¥ and (ReLU'(a))¥.

Common Randomness: P, I’} hold random shares of
0 over Zj,, denoted by ug and uy resp.

1: For j € {0,1}, parties P; computes (r)J’ = 2(a)1’

2 Py, Py, Pyrur \ with Py, Py having

& Py, Py Tearn (y)t ™ & (y)1 7",

Tysg({Po, P1}, P2) |with P},j €
(y);"l & Py, Py learn (o)f &

4: For j € {0,1}, P; outputs (’y)JI =§ (a);‘ Fuj.

Protocol Rounds | Communication
MatMuly, 5 v 2 2(2mn + 2np 4 mo)t
MatMuly, 5» (with PRF) | 2 (2mn 4200 4+ mov)L
SelectShare 2 5

PrivateCompare 1 2Llo

ShareConvert : |‘ ogp + 6L

Compute MSB @/ 4llogp +13¢

17

Initial attempt
Alternative approach (The Genome Paper)
Bit-decomposition

Optimised hit-decomposition (ComposeNet)

18

04: Initial attempt

Remove ‘Share Convert’ and assume shares to be in Z, , already
First month was spent trying to compile/run SecureNN code
We were in contact with main author Sameer Wagh, but it wasn't very helpful

Later we realized our logic was wrong about removing ‘Share Convert’ and started
looking for other ways to optimize ComputeMSB

19

04: Alternative PPML approach

High Performance Logistic Regression
for Privacy-Preserving Genome Analysis

Martine De Cock, Rafael Dows

Anderson C. A. Nascimento,

Davis Railsback, Jianwei Shen, Ariel Todoki

Absroc—1n biomedical spybcations, rmuable dats s oen

split between owners who pely shars the den be-
o ey mgnl.lmm and concerns. Training Ma
Tearning ‘models oo the joit datn without violating privacy

" major technclogy challengs that can be addresed by

combining techniques from Mac arning and cryptography.
achion Learming

tnpmgnlphk technique named secure Multi-Party Computation,

Machine Learning techniques, alzorithmic and impleme
qpitons sty secemty (s cnnble prctinl sre Machioe
Learning over distributed data scts. Such optimizations can be
(e e e Mo of e Mk i probbio o

T s fmvores seure Tuo-Party Computation protocls
o ith a trusid i s corrtlted ran-

We
»mi alsortm for training a logistic resresion modd, and we

lab test results or gene expression values, and low sample
size, i.¢. a small number of training examples corresponding
10 e'g. patients or tissue samples. Adding o these challenges.,
valuable training data is ofien split between parties (data
owners) who cannot openly share the data hecause of privacy
regulations and concerns. Due 1o these concens. privacy-
preserving solutons. using echniques such as secure Mult
‘Computation (MPC), become important so that this data
can stll be used to train ML models, perform a diagnosis, and
in some cases even derive genomic diagnoses
We tackle the problem of training a binary classifier on
high dimensional gene expression data held by different data
owners, while keeping the training data private. This work
is directly inspired by Track 4 of the iDASH 2019 secure
genome analysis mmpmumﬂ The iDASH competition is a
yearly intemational compeition for participants o create and

e i protocol for computing
the activaion hancion et v snkhr seare com
protocols nd seiesof cyplographic
Eogincering optimizations to mprov the performanse. To the
et of our knowidee, we preset the st exitiog securs
Maki-Party Computation implementation fo truiing logisic
on high dimcnsonal genome data dstributed

Fegress
across a loc:
For our largest gene expression data set, we train a model
that equies aver 7 bilion ecure maltplications: he taining
completes in about twork. The
mplemeriation i a fu e e
. Emplementaion wiih which we won st place i Track § of

i IDASH 2019 mears roome sy mmpehn

Index Terms—Logistic regression, Gradient descent, Machine
Learaing oot il Py Compototon G cxpesion
data

1. BACKGROUND
A. Introduction

Machine Learning (ML) has many applications in the
biomedical domain, such as medical diagnosis and personal-
ized medicine. Biomedical data sets are typically characterized
by high dimensionality, ie. a high number of features such as

Marin: D Cock Andeocn, . A Nasiwnt, Das Rishck. i
o At Tt i e Sl o ipemsing g
University of Washington Tcoma. Emais o, axicey, o, 5
s o B

Mafs D ok s 3 GotProsor Gl Uty

Rafact Dowsky s with the Department of Comput
e e soppored by B Coner

Cyter Security

implement privacy ving protocols for applications with
‘senomic data. The goal s in evaluating the best-known secure
methods and advancing new techniques to solve real-world
problems in handling genomic data. In the 2019 edition there
were a total of four different tracks, where Track 4 invited
15 to design MPC solutions for collaborative training

of ML models originating from multiple data owners. One
of the Track 4 competition data sets consists of 470 training
examples (records) with 17.814 numeric features. whike the
other consists of 225 training examples with 12,634 numeric
features. An inital 5-fold cross-validation analysis in the clear,
ie. without any encryption, indicated that in both cases logistic
regression (LR) models are capable of yielding the level of
prediction accuracy expected in the competition, prompling
us to investigaie MPC-based protocols for secure LR training.
“The competition requirements implied the existence of mul-
tiple data owners who each send their training example(s) in an
encrypted or secret shared form o duta processrs (computng
nodes), as illustrated in Figure I] The honesi-bui-curious data
processors are not to e anything about the data as they
engage in computations and communications with each other.
Atthe end, they disclose the trained classifier — in our case, the
coefficients of the LR model — to the data owners. Since the
data processors cannot learn anything about the values in the
data set, this implies that our protocol is applicable in a wide
range of scenarios. independently of how the original data is
split by ownership. Our protocol works in scenarios where
the data is horizontally partitioned. i.e. when each data owner

e e N Coes Bt oo Mioe s Ot

b,
accessed on Jan 19, 2020

The Genome Paper* released during our thesis

Presents 2-PC method for performing logistic

regression

Same method can be used for private neural

networks
Won first prize in Track 4 of iDash-2019

Secure bit-decomposition to obtain shares of MSB

*"High performance logistic regression for privacy preserving genome analysis” by De Cock et. al. \

04: Bit-decomposition
Protocols exists that produces XOR shares of all bits of a shared value.

Utilize this to get shares of MSB.

Genome Paper presents 3 Bit Decomposition protocols for A-bit integers
o Linear Adder circuit (Linear, A rounds)
o Speculative optimized (2 + log,(A) rounds)
o Hyper Optimized ComposeNET (1 + log,(A) rounds) (BitDecompOPT)

We implemented ComputeMSB and BitDecompOPT to compare.

21

Based on the speculative method
o Logarithmic rounds

Observation: The carry bit depends on 2
signals

Computing all matrix compositions M, to
M. yields the carry vector in upper right
hand entry of resulting matrix

04: BitDecompOPT

5i=0; Db B Ci—1

Generate

g; = a;b;

c; = a;b; & aze & bicig

Propagate

C; = Gi T PiCi—1

B 4)fs

gi—-1
1

Ci-2| oV 2 Ci—2
J['77] - 7]

22

04: BitDecompOPT

e Matrix composition network: ComposeNet

e Logarithmic depth network

23

Experiments

Our implementation
Design of experiments

05: Our implementation

Architectural implementations
Secret share logic

Data structures for handling integers
inZ,
Networking infrastructure

O O O O O O O

Protocol implementations

Multiplication 2-party: Single-MatMul,
Single-Mult, List-MatMul, List-Mult
Multiplication 3-party: Single-Mult

SC (Share Convert)

PC (Private Compare)

ComputeMSB

ComposeNET

BitDecomp

BitDecompOPT

25

Local experiments

Windows 10 (64 bit)

4 cores, 16 GB RAM
Local ping: 0.19 ms

05: Design of experiments

Bitlength L = 2%4 and prime p = 67
Each protocol was run 1000 times

‘ Amsterdam

Distributed experiments

‘ London

Digitalocean.com
3x Ubuntu 18.04 Its (64 bit)
Tcore, 1GBRAM ©

O

C
1821ms o

Frankfurt ‘

‘ Results

06: Results

Local vs distributed

Local time (s) Dist. time (s) Comm (bytes)

Input size — 1 1000 | 1000 1, 1000
BitDecompOPT A - - 0.0686 68.58 1674 1674000
BitDecompOPT B - - 0.0726 72.58 1674 1674000
BitDecompOPT C . - 0.0825 82.47 1674 1674000

BitDecompOPT Avg 0.0304 30.48 0.0745 74.54 1674 1674000

SC 4+ ComputeMSB 0.0221 22,04 0.1015 101.52 1987.493 1987493

Raw local computation

time (s) ‘
Input size — 1 1000
SC + ComputeMSB 0.000147 0.147 PN \
BitDecompOPT 00111 11.1 ’ —7 R\
\ / [\ | b BN
Y / N » va \\ A
, 7SN 28
\ 1 SN

Discussion

ComputeMSB vs. BitDecompOPT - local setting
Theoretical vs. actual communication
Combining approaches

Utilizing full bit-decomposition

29

07: ComputeMSB vs
BitDecompOPT - Local setting

SecureNN's ComputeMSB runs faster than
BitDecompOPT in a local setting

Tradeoff: Local computation and communication
rounds

BitDecompOPT introduces significant
computational overhead.

SC + ComputeMSB

Less local computation

More communication rounds

BitDecompOPT

More local computation

Less communication rounds

30

07 Theoretical vs actual
Communication

Theoretical communication is based on the assumption that the implementation
executes with no overhead.

e Requires intricate knowledge of low level programming and networking, which was
out of scope for this project.

e Ourresults are achieved from an implementation that is far from the theoretical data
transfer.

Theoretical VS . Actual

31

07: Combining approaches

Implement BitDecomOPT in SecureNN to reduce DRelU rounds 9 =7
Both SecureNN and The Genome Paper claim same security.
Problem with 3 party =2 party

SecureNN already uses a trusted initializer for common randomness, use it for beaver triplets
to properly implement BitDecompOPT

07: Utilizing full bit-decomposition

Bit-decomposition faster than computing MSB directly

But needs to compute the full bit-decomposition of a value to obtain MSB
Computes A-1 bit values which are not used for anything else

Further optimize by utilizing values computed during bit-decomposition

o Other activation functions?

Bit values not used
MSB

33

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

