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  Input Blood 
pressure Fat% ... Label

Alex 132 20 ... Unhealthy

Emil 92 8 ... Healthy

... ... ... ... ...

● Data with X number of rows 
(training examples), and Y 
number of columns (features)

● Label controls the training

● ML algorithm learns a hidden 
function which describes the 
data

Privacy Preserving Machine Learning
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Privacy Preserving Machine Learning

Traditional ML

● Data holders outsource ML

● Data may be sensitive
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Privacy Preserving Machine Learning

Private machine learning

● Data holders outsource ML

● Data may be sensitive
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02: (Deep) Neural Networks

● A neural network estimates the parameters 
of “the hidden” function which describes a 
dataset

● Consists of input, hidden, and output 
layers

● Weights (parameters) are the edges
● Forward propagation

○ Linear combination of input values 
and weights        activation function

○ Matrix multiplication
● Backpropagation

○ Adjust weights according to output 
and true label
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02: Secure Multi-Party 
Computation

● N parties want to compute some function without 
revealing content of own input

● Functions are implemented as protocols that are 
private and secure

● Such MPC protocols can be used to do private 
machine learning
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02: Types of security

Input privacy

The input remains private and no 
party learns the secret of other 

parties

Correctness Robust
Protocol achieves 

this in any scenario

Any number of colluding dishonest parties 
participating in the protocol, should not be 

able to, by deviating from the protocol, 
force or trick an honest party to output 

something incorrect
Abort

Honest party detects 
deviation and aborts
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02: Adversarial model

Passive adversary
● Adversary that corrupts 1 party and 

observes the protocol
● Tries to learn secrets
● Follows the protocol dutifully

Active adversary
● Adversary that corrupts 1 party and deviates from 

the protocol
● Tampers with inputs and outputs to alter result of 

protocol
● Tampers with inputs and outputs to learn secrets
● May halt the protocol to prevent completion
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03: SecureNNs PPML approach

● MPC protocols (3 parties)

● Input secret shares send to the 3 parties

● Run interactive protocol to train a neural network

● Trained model retained as secret shares

● Private prediction
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03: Security guarantees

Passive adversary

● SecureNN provides full input 
privacy against a single passive 
corrupted party

● Proved with simulation proof
● Correctness of the protocol 

follows trivially

Active adversary

● SecureNN provides full input privacy 
against an active adversary corrupting 1 
party

● SecureNN can’t  provide correctness for 
an active adversary
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03: Protocol structure

Main 
protocols

Supporting 
protocols
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03: End-to-end protocol

● Construct a NN using a sequence of 
protocol calls

● E.g. a 3 layer network with a softmax 
output layer

1. Call MatMul
2. Call ReLU
3. Call MatMul
4. Call ReLu
5. Call DIV
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03: Communication bottlenecks

● Function DReLU uses 9 rounds of 
communication

● Uses trick to obtain MSB by 
converting to odd ring
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Initial attempt
Alternative approach (The Genome Paper)
Bit-decomposition
Optimised bit-decomposition (ComposeNet)
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04: Initial attempt

● Remove ‘Share Convert’ and assume shares to be in ZL-1 already

● First month was spent trying to compile/run SecureNN code

● We were in contact with main author Sameer Wagh, but it wasn’t very helpful

● Later we realized our logic was wrong about removing ‘Share Convert’ and started 
looking for other ways to optimize ComputeMSB
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04: Alternative PPML approach

● The Genome Paper* released during our thesis
● Presents 2-PC method for performing logistic 

regression
● Same method can be used for private neural 

networks
● Won first prize in Track 4 of iDash 2019
● Secure bit-decomposition to obtain shares of MSB

*”High performance logistic regression for privacy preserving genome analysis” by De Cock et. al.
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04: Bit-decomposition

● Protocols exists that produces XOR shares of all bits of a shared value.

● Utilize this to get shares of MSB.

● Genome Paper presents 3 Bit Decomposition protocols for ƛ-bit integers
○ Linear Adder circuit (Linear, ƛ rounds)
○ Speculative optimized (2 + log2(ƛ) rounds)
○ Hyper Optimized ComposeNET (1 + log2(ƛ) rounds) (BitDecompOPT)

● We implemented ComputeMSB and BitDecompOPT to compare.
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04: BitDecompOPT

● Based on the speculative method
○ Logarithmic rounds

● Observation: The carry bit depends on 2 
signals

● Computing all matrix compositions M1 to 
Mi yields the carry vector in upper right 
hand entry of resulting matrix

PropagateGenerate
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04: BitDecompOPT

● Matrix composition network: ComposeNet

● Logarithmic depth network
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Experiments
05
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05: Our implementation

Architectural implementations
● Secret share logic
● Data structures for handling integers 

in ZL
● Networking infrastructure

Protocol implementations
○ Multiplication 2-party: Single-MatMul, 

Single-Mult, List-MatMul, List-Mult
○ Multiplication 3-party: Single-Mult
○ SC (Share Convert)
○ PC (Private Compare)
○ ComputeMSB
○ ComposeNET
○ BitDecomp
○ BitDecompOPT 25



05: Design of experiments

● Bitlength L = 264, and prime p = 67
● Each protocol was run 1000 times

Digitalocean.com
3x Ubuntu 18.04 lts (64 bit)

1 core, 1 GB RAM

Windows 10 (64 bit)
4 cores, 16 GB RAM
Local ping: 0.19 ms

Local experiments

Distributed experiments

London

FrankfurtAmsterdam

B12.23 ms

A
8.0

5 m
s

C
18.21 ms
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Results
06
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06: Results

Raw local computation

Local vs distributed
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Discussion
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ComputeMSB vs. BitDecompOPT - local setting
Theoretical vs. actual communication 

Combining approaches
Utilizing full bit-decomposition
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07: ComputeMSB vs 
BitDecompOPT - Local setting

● SecureNN’s ComputeMSB runs faster than 
BitDecompOPT in a local setting

● Tradeoff: Local computation and communication 
rounds

● BitDecompOPT introduces significant 
computational overhead.

Less local computation

More communication rounds 

SC + ComputeMSB
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More local computation

Less communication rounds 

BitDecompOPT



07: Theoretical vs actual
Communication

● Theoretical communication is based on the assumption that the implementation 
executes with no overhead.

● Requires intricate knowledge of low level programming and networking, which was 
out of scope for this project.

● Our results are achieved from an implementation that is far from the theoretical data 
transfer.

Theoretical Actual
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07: Combining approaches

● Implement BitDecomOPT in SecureNN to reduce DReLU rounds 9     7

● Both SecureNN and The Genome Paper claim same security.

● Problem with 3 party      2 party

● SecureNN already uses a trusted initializer for common randomness, use it for beaver triplets
to properly implement BitDecompOPT 
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07: Utilizing full bit-decomposition

● Bit-decomposition faster than computing MSB directly

● But needs to compute the full bit-decomposition of a value to obtain MSB

● Computes ƛ-1 bit values which are not used for anything else

● Further optimize by utilizing values computed during bit-decomposition

○ Other activation functions?
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CREDITS: This presentation template was created by Slidesgo, including 
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Please keep this slide for attribution.
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